
European Journal of Operational Research 196 (2009) 847–855
Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier .com/locate /e jor
Invited Tutorial

Comparative evaluation of performance of national R&D programs
with heterogeneous objectives: A DEA approach

Hakyeon Lee a, Yongtae Park a,*, Hoogon Choi b

a Department of Industrial Engineering, School of Engineering, Seoul National University, San 56-1, Shillim-dong, Kwanak-gu, Seoul 151-742, Republic of Korea
b Department of Systems Management Engineering, School of Engineering, Sungkyunkwan University, 300 Cheoncheon-dong, Jangan-gu, Suwon,
Gyeonggi-do 440-746, Republic of Korea

a r t i c l e i n f o
Article history:
Received 3 September 2007
Accepted 19 June 2008
Available online 26 June 2008

Keywords:
Data envelopment analysis
R&D evaluation
R&D performance
National R&D program
Analytic hierarchy process
0377-2217/$ - see front matter � 2008 Elsevier B.V. A
doi:10.1016/j.ejor.2008.06.016

* Corresponding author. Tel.: +82 2 880 8358; fax:
E-mail address: parkyt@cybernet.snu.ac.kr (Y. Park
a b s t r a c t

The strategic importance of performance evaluation of national R&D programs is highlighted as the
resource allocation draws more attention in R&D policy agenda. Due to the heterogeneity of national
R&D programs’ objectives, however, it is intractably difficult to relatively evaluate multiple programs
and, consequently, few studies have been conducted on the performance comparison of the R&D pro-
grams. This study measures and compares the performance of national R&D programs using data envel-
opment analysis (DEA). Since DEA allows each DMU to choose the optimal weights of inputs and outputs
which maximize its efficiency, it can mirror R&D programs’ unique characteristics by assigning relatively
high weights to the variables in which each program has strength. Every project in every R&D program is
evaluated together based on the DEA model for comparison of efficiency among different systems.
Kruskal–Wallis test with a post hoc Mann–Whitney U test is then run to compare performance of R&D
programs. Two alternative approaches to incorporating the importance of variables, the AR model and
output integration, are also introduced. The results are expected to provide policy implications for effec-
tively formulating and implementing national R&D programs.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

As R&D has been considered as a driving force for national com-
petitive advantage, many countries have been raising R&D invest-
ments through various national R&D programs (Lee et al., 1996).
Since R&D investment is one of the most decisive elements in pro-
moting scientific and technological progress (Wang and Huang,
2007), the effective use of the limited R&D resources can be re-
garded as a prerequisite for benefiting from formulation and
implementation of national R&D programs. Thus, performance
evaluations of R&D programs need to be made so that the limited
resources are allocated to promising R&D programs and poor R&D
programs can be improved or terminated.

Although a number of studies have been conducted to measure
R&D performance at various levels, few attempts have been made
at the national program-level. This is due to the heterogeneity of
R&D programs in terms of policy purpose. Since each R&D program
has its own primary objective such as publishing academic papers
for basic research, issuing patents and developing prototypes for
applied research, and providing funds with researchers for R&D hu-
man resource development, it is intractably difficult to relatively
ll rights reserved.
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compare the performance of various national R&D programs at
the same time and in the same context.

Two conventional approaches to assessing R&D performance,
peer review and bibliometric method do not work well for the rel-
ative evaluation of heterogeneous R&D programs. The peer review
method, which is based on perceptions of well-informed experts
about various quality dimensions of R&D, is inherently subjective
and likely to be biased depending on interests, experience, and
knowledge of the evaluators (Nederhof and van Raan, 1987; Brinn
et al., 1996). The bibliometric method is considered relatively
objective, but the results highly depend on the measurement
method (Nederhof and van Raan, 1993). Regardless of whether
simple count of publications is employed or the number of papers
is adjusted based on citations or impact scores, the conventional
bibliometric method has a limitation in that it only deals with a
single type of R&D outputs, namely, publications. Although it is
suitable to evaluation of basic research program or university re-
search, other important outputs of national R&D activities such
as human resources are ignored. A problem still occurs even when
considering multiple outputs of R&D activities. To incorporate sev-
eral output variables and produce a single measure for perfor-
mance comparison, the relative importance of variables needs to
be determined and fixed. However, it does not make sense that
the same set of weights is applied to evaluations of R&D programs
with different objectives.
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The tenet of this paper is data envelopment analysis (DEA) can
overcome these limitations. DEA is a linear programming model for
measuring the relative efficiency of decision making units (DMUs)
with multiple inputs and outputs (Cooper et al., 2000). Since it can
not only handle multiple outputs, but also allow each DMU to
choose the optimal weights of inputs and outputs which maximize
its efficiency (Cherchye et al., 2007), it is capable of mirroring R&D
programs’ unique characteristics by assigning high weights to the
variables in which each project has strength. This study measures
and compares the performance of six national R&D programs in
Korea using the DEA efficiency. Basically, the performance of a
R&D program is measured based on the performance of projects
belonging to the program. DEA is carried out for the whole set of
R&D projects in the six R&D program. Kruskal–Wallis test with a
post hoc Mann–Whitney U test is then run to compare perfor-
mance of R&D programs.

The remainder of this paper is organized as follows. Section 2
reviews the DEA models used in this study and applications of
DEA to measuring R&D performance. The data for the case study
are briefly introduced in Section 3. Section 4 deals with the details
of analysis and results. The paper ends with conclusions in Section 5.

2. DEA

2.1. DEA models

DEA is a non-parametric approach that does not require any
assumptions about the functional form of a production function
and a priori information on importance of inputs and outputs.
The relative efficiency of a DMU is measured by estimating the
ratio of weighted outputs to weighted inputs and comparing it
with other DMUs. DEA allows each DMU to choose the weights
of inputs and outputs which maximize its efficiency. The DMUs
that achieve 100% efficiency are considered efficient while the
other DMUs with efficiency scores below 100% are inefficient.

The first DEA model proposed by Charnes et al. (1978) is the
CCR model that assumes that production exhibits constant returns
to scale. Banker et al. (1984) extended it to the BCC model for the
case of variable returns to scale. When it comes to R&D returns to
scale, findings from previous studies are somewhat mixed (Graves
and Langowitz, 1996). It was found that R&D activity can exhibit
increasing or decreasing returns to scale as well as constant returns
to scale (Bound et al., 1984; Scherer, 1983); thus, the BCC model is
employed in this study. DEA models are also distinguished by the
objective of a model: maximize outputs (output-oriented) or min-
imize inputs (input-oriented). It is implicitly assumed that the
objective of R&D lies in increasing outputs rather than decreasing
inputs. Therefore, this study adopts the output-oriented model.

The output-oriented BCC model is formulated as

max g
s:t: Xk 6 xo;

gyo � Yk 6 0;
ek ¼ 1;
k P 0;

ð1Þ

where X is the matrix of input vectors, Y is the matrix of output vec-
tors, (xo,yo) is the DMU being measured, g is the reverse of the effi-
ciency score, k is the vector of intensity variables. The only
difference between the CCR and BCC model is the presence of the
convexity condition, ek = 1. The dual form is

min z ¼ vxo � vo

s:t: uyo ¼ 1;
vX� uY � voe P 0;
v P 0; u P 0; vo; free in sign;

ð2Þ
where v and u are the vectors of the weights given to inputs and
outputs, respectively, vo is the scalar associated with ek = 1 in the
primal form. The decision variables of the problem are the values
of the weights (v and u). To put it differently, the weights are cho-
sen in a manner that assigns a best set of weights to each DMU
where ‘‘best” means the resulting efficiency score is maximized un-
der the given data. Thus, the weights differ across DMUs. Such a
flexible and endogenous weighting system of DEA is called the
‘‘benefit of the doubt” approach (Cherchye et al., 2007). One thing
that should be noted is the optimal weights at a given point, partic-
ularly an extreme efficient point, may not be unique (Rosen et al.,
1998). This non-uniqueness problem may cause problems with
interpretation.

If prior knowledge or accepted views exist, however, the weight
flexibility in DEA leads to produce unrealistic efficiency scores (Al-
len et al., 1997). When this is the case, restrictions need to be
placed on weights in DEA (Dyson and Thanassoulis, 1988). The
use of the weights restriction makes it possible to mirror prefer-
ence in a real world. Among a large diversity of weights restriction
methods, the most common one is the assurance regions (AR)
model proposed by Thompson et al. (1990). The AR of type 1 is
to impose restrictions on the upper bound (Uij) and lower bound
(Lij) of a ratio of the weights of two variables (ui/uj) as the
following:

Lij 6
ui

uj
6 Uij: ð3Þ

This study also employs the AR model to reflect the relative impor-
tance of the same types of output variables.

One general assumption of DEA models is convexity. It means the
production possibility set P is convex so that if two activities, (x1,y1)
and (x2,y2), belong to P, then every point on the line segment be-
tween these two points belongs to P. However, when DMUs belong-
ing to different systems are considered and compared together, the
convexity assumption is not valid since different systems may use
different activities which cannot be compared. In such a situation,
the convexity assumption only holds within the same system but
does not hold between different systems (Cooper et al., 2000). In or-
der to formulate the corresponding model, input and output vectors
are divided for each system. That is, in the case of two systems, A and
B, input x is divided into xA and xB, and output y into yA and yB. Also,
the binary variables, zA and zB, are added as a dummy which can only
assume the values 0 or 1. The output-oriented BCC model for com-
parison of efficiency between two systems is written as the follow-
ing mixed integer linear programming problem:

max g
s:t: XAkA þ XBkB 6 xo;

gyo � ðYAkA þ YBkBÞ 6 0;
ekA ¼ zA;

ekB ¼ zB;

zA þ zB ¼ 1;
kA P 0; kB P 0;
zA; zB ¼ 0 or 1:

ð4Þ

This model ensures not only the evaluation of the efficiency of each
DMU but also the comparison of the two systems. Although the
above model deals with two systems, it can be generalized to more
number of systems. This study employs the different system model
by extending it to six systems.

2.2. DEA for measuring R&D performance

DEA has some attractive features in measuring R&D perfor-
mance (Wang and Huang, 2007). First, DEA can be utilized even



Table 1
Descriptions of R&D programs

Program Number of
projects

Objective

A 436 Supporting researchers to work in creative research
activities individually or collaboratively in the fields of
basic sciences emphasizing interdisciplinary research,
and encouraging to develop outstanding human
resources for research

B 46 Increasing competence in creative innovation, securing
national core technologies which will enable to create
new businesses

C 21 Supporting creative basic research to ensure exploration
of basic theory and knowledge that may lead to
outstanding papers and the development of advanced
technologies

D 28 Supporting mainly in engineering research with the
potential for industrial advancement, while encouraging
interdisciplinary collaborations between industry and
academia and enhancing the international
competitiveness of national industries

E 13 Supporting large-scale, long-term R&D activities, the
outputs of which are to be used both in bioengineering
and clinical medicine, and playing a key role in
cultivating human resources in basic medical sciences

F 4 Supporting research centers that are considered capable
of creating world-class knowledge and competitiveness
in core science and technology fields that require
strategic incubation for national interests
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in the situation where a priori information on preference about
variables does not exist. This is exactly the context of R&D perfor-
mance evaluation in which there is no universally agreed view on
importance of R&D inputs and outputs. As mentioned before, DEA
solves this problem by automatically deriving the endogenous
weights that represent a relative value system for each DMU (Allen
et al., 1997). Such a data-oriented weighting method is considered
justifiable and useful in the construction of composite indicators
under the context of uncertainty about, and lack of consensus on
an appropriate weighting scheme (Cherchye et al., 2007). The
‘‘benefit of the doubt approach” of DEA plays an even more crucial
role for program-level evaluation than project-level evaluation.
When R&D projects of the same program are evaluated, there
may be an accepted view of preference on R&D outputs according
to the main objective of the R&D program. Due to the heterogene-
ity of ultimate goals of various R&D programs, on the other hand,
the relative importance of R&D outputs differ across programs. A
published paper in an international journal could be more or less
important than a granted patent or a student graduated with doc-
toral degree. The complete flexibility in the selection of weights in
DEA not only makes it possible to compare performance of R&D
programs with different objectives, but also take away an opportu-
nity for excuse of inefficient R&D program managers because inef-
ficient R&D programs are under-performing even by putting their
own weights solely on ‘‘self esteem”. Second, DEA is useful for
the case in which the function of relationships between inputs
and outputs cannot be defined. As mentioned before, since DEA
does not require any assumptions about the functional form of a
production function, it fits R&D activities whose production func-
tions have not been specified. Third, DEA can handle multiple in-
puts and outputs which cannot be dealt with in the standard
parametric methods. It enables various types of inputs and outputs
of R&D activities to be considered in performance evaluation.

These advantages have led DEA to be effectively used for R&D
performance evaluation at such various levels as nations (Wang
and Huang, 2007; Kocher et al., 2006; Lee and Park, 2005), univer-
sities (Feng et al., 2004; Korhonen et al., 2001), academic disci-
plines (Garg et al., 2005), projects (Eilat et al., 2006; Swink et al.,
2006), and project teams (Paradi et al., 2002). Nevertheless, the
program-level application remains a void in the literature.
3. Data

3.1. R&D programs

This study deals with six national R&D programs supported by a
government foundation located at Daejeon in Korea. The founda-
tion aims to promote the creative potential of Korea’s science
and technology by formulating and supporting a variety of R&D
programs. The annual budget of the foundation in 2007 exceeded
USD 1 billion. The R&D programs supported by the foundation
can be categorized into four major programs, and the selected six
programs are sub-programs in one of the major programs. Though
they belong to the same major program, the six programs have dif-
ferent objectives and different number of R&D projects, as shown
in Table 1. The foundation has been evaluating individual projects
based on the peer review method as well as quantitative outcomes,
but it has never conducted performance comparison among the
programs. In order for the limited budget to be effectively used,
however, managers in the foundation feel it necessary to know
which programs performed better or worse.

The primary goal of Program A and E is to develop outstanding
human resources for basic science and bioengineering, respec-
tively. Program C focuses on basic scientific research while Pro-
gram D and F are aimed at developing national competitiveness
through applied research. What is at the core of Program B is to
create new business with innovative technologies.

All projects in Program A started in 2002 or in 2003 and ended
in 2005. The projects in the other five programs were initiated be-
tween 1998 and 2002. Since some of those projects are still in pro-
gress in 2007, only the projects finished in 2005 were included in
the data set. Although the duration and the time of start and end
somewhat differ across projects, it is assumed that there is no ef-
fect of differences in project duration on the performance of pro-
jects since the amount of funds is basically determined in
proportional to duration.
3.2. Variables

Two inputs and ten outputs were selected for this study, as
shown in Table 2. The amount of funds given to a project and the
number of researchers on a project were selected as a proxy for
labor input and capital input, respectively. The amount of funds
is the rest excluding the salary paid to researchers from total
funds.

The four variables related with papers were included to the set
of output variables. The academic papers published in journals
have been considered as the major output of research and widely
used to evaluate performance of researchers (OECD, 2001). Patents
were also selected as outputs since patents have most frequently
used as direct output of R&D activities (Zhang et al., 2003). The
variables about patents are also divided into the four types. Finally,
the output includes the perspective of human resource develop-
ment of R&D with two variables, graduate students with master’s
degree and doctoral degree. Contrary to R&D projects of private
firms, human resource development is one of the main objectives
of governmental R&D programs (Garg et al., 2005).

The data were obtained from the foundations’ database and ar-
ranged for analysis. The outputs produced between termination of
projects and the end of 2007 were also counted since it usually
takes a long time for R&D outputs to be realized (Adams and Grilli-
ches, 2000). The descriptive statistics of the data are given in
Appendix A.



Table 3
Results of independent evaluation of individual programs

Programs Number of
projects

Average efficiency
score

Number of efficient projects
(percentage)

A 436 0.4435 30 (6.88%)
B 46 0.6971 11 (23.91%)
C 21 0.8587 13 (61.90%)
D 28 0.9268 21 (75.00%)
E 13 0.9862 12 (92.31%)
F 4 1 4 (100%)

Table 4
Results of evaluation and comparison of program performance

Program Number of projects Average efficiency score Mean rank

A 436 0.4434 239.88
B 46 0.6971 366.99
C 21 0.7989 423.95
D 28 0.9257 475.73
E 13 0.9862 475.81
F 4 0.2651 136.75
Relative comparison using Mann–Whitney U test: E, D > C > B > A, F

v2 = 124.795, df = 5, p = 0.000.

Table 2
Variables for DEA

Variables Description

Input
(I1) Funds Total amount of funds given to a project
(I2) Researchers Number of Ph.D. researchers on a project

Output
(O1) Domestic SCI
papers

Number of domestic scientific and technical articles
published or accepted in journals listed on SCI (science
citation index)

(O2) Domestic non-
SCI papers

Number of domestic scientific and technical articles
published or accepted in journals not listed on SCI

(O3) International SCI
papers

Number of international scientific and technical articles
published or accepted in journals listed on SCI

(O4) International
non-SCI papers

Number of international scientific and technical articles
published or accepted in journals not listed on SCI

(O5) Domestic applied
patents

Number of patents applied in domestic patent offices

(O6) Domestic
granted patents

Number of patents registered in domestic patent offices

(O7) Foreign applied
patents

Number of patents applied in foreign patent offices

(O8) Foreign granted
patents

Number of patents registered in foreign patent offices

(O9) Master’s degree
students

Number of students graduated with master’s degree

(O10) Doctoral degree
students

Number of students graduated with doctoral degree
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4. Analysis and results

4.1. Measuring performance of R&D programs

This study aims to measure and compare the performance of
national R&D programs with heterogeneous objectives using
DEA. Although comparison is made at the program-level, a DMU
in this study is a project, not a program. The reason for this is two-
fold. If we consider R&D programs as DMUs, the data for each pro-
ject have to be aggregated into single values for each program. The
results then highly depend on how to aggregate data, and, regard-
less of the method, information loss occurs. The bigger problem is
weak discriminatory power. When the number of DMUs is rela-
tively small compared with the number of inputs and outputs, a
large portion of the DMUs will be identified as efficient so the effi-
ciency discrimination is lost (Cooper et al., 2000). The rule of
thumb is that the number of DMUs should be at least three times
larger than the combined number of inputs and outputs (Banker
et al., 1989) or more than the product of the numbers of inputs
and outputs (Boussofiane et al., 1991). In most situations, the num-
ber of R&D programs does not comply with the above rules since it
is usually small compared with the number of inputs and outputs,
as is in the case of this study. Then, most of the programs are likely
to be considered equally efficient.

Thus, the reasonable alternative is to treat a R&D project as a
DMU, not a R&D program. The project-level evaluation is con-
ducted, and the performance of a program is then measured based
on the performance of projects belonging to the program. Two op-
tions exist on the project-level evaluation. The first one is to run
DEA for each R&D program. Only the projects belonging to the
same program are evaluated together by DEA. Then, a measure
or an indicator can be employed for performance comparison
among programs. This kind of method for comparison has often
been used when using traditional performance measures, but it
does not make any sense in the case of the DEA efficiency since
DEA measures the relative efficiency among DMUs included, not
the absolute one. See the actual example in Table 3 summarizing
the results of conducting DEA with the output-oriented BCC model
for each program. In terms of both the average efficiency score and
the portion of efficient projects, Program A has the lowest (0.4435,
6.88%) while Program F ranks the first (1, 100%). However, what
makes differences is not the actual performance, but the number
of projects included in each program. It is illustrated that the less
the number of projects included, the higher both the average effi-
ciency score and the percentage of efficient projects. The extreme
case is found in Program F in which all of the four projects are eval-
uated as efficient. Even if the number of DMUs of programs is the
same, the comparison cannot be made because projects are not
evaluated at the same time.

To compare the performance among R&D programs, therefore,
every project in every program has to be evaluated together. How-
ever, the six R&D programs are not directly comparable since their
primary objectives are different. In other words, the basic BCC
model cannot be used since the convexity assumption does not
hold among the six programs. Thus, we employed the model for
comparison of efficiency between different systems as the basic
model for the analysis. An extension of (4) to six systems was ap-
plied to the whole set of 548 R&D projects of the six R&D programs.
As a result, 72 projects (13.14%) were found to be efficient and the
average efficiency score is 0.5146. Table 4 summarized the average
efficiency scores of the six programs. Program E has the highest
average score while Program F ranks the lowest. Since all the pro-
jects are evaluated together, it now makes sense to compare the
performance of R&D programs based on the DEA results.

However, simple comparison based on average efficiency scores
does not have statistical validity since theoretical distribution of
the efficiency scores in DEA is unknown. Thus, Kruskal–Wallis test
was run to compare performance of R&D programs. It is a non-
parametric method that compares between the medians of two
or more samples to determine if the samples have come from dif-
ferent populations. A post hoc Mann–Whitney U test was also con-
ducted for paired comparisons. The results are also shown in Table
4. It was found that there exist statistically significant differences
among efficiency scores of the six R&D programs. The final ranking
of the six R&D programs is E, D > C > B > A, F in order.

As stated before, the primary reason for using DEA for compar-
ing the performance of R&D programs with different objectives is
because DEA is capable of mirroring R&D programs’ unique charac-
teristics by assigning relatively high weights to the outputs in
which each project has strength. Thus, the magnitude of the weight
expresses how highly the variable is evaluated, relatively speaking
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(Cooper et al., 2000). To examine the relative importance of output
variables under each program, the output weight vectors for each
project were normalized by dividing each element by their sum.
Table 5(a) summarized the average normalized weights of output
variables for each program. The numbers in parentheses are the
rankings of the weights in each program. Kruskal–Wallis test was
also run for differences among the weights of the six programs. It
is shown that the weights given to output variables significantly
differ across the six programs at the 0.05 level, except u3 and u7.
The weights seem to reflect each program’s own objectives well.
In Program A and E whose main objective is to develop human re-
sources, O9(Master’s degree students) and O10 (Doctoral degree
students) obtained high weights. Program C focuses on basic re-
search so that the variables related with papers, O1, O3, and O4,
are relatively highly evaluated. The two programs for applied re-
search, Program D and F, have high weights in the variables on pat-
ents, particularly, O5 and O7. As the purpose of Program B is
general rather than specific, its weights are not characteristic.

As mentioned in Section 2, however, the weights may not be
unique for efficient projects so that it could affect the above
interpretations. Thus, the average weights were calculated only
for the 476 inefficient projects, as shown in Table 5(b). Some dif-
ferences in the relative importance of the output variables are
found between Table 5(a) and (b). However, in the case of the
variables related with the above interpretations, there are not
big differences in the rankings of corresponding weights: no or
one level change, except for u4(3 ? 6) in Program C. On the other
hand, for some variables, the weights in Table 5(b) better capture
the characteristics of programs (e.g. u6(6 ? 3) in Program D). In
either case, it is shown that DEA is capable of capturing R&D pro-
grams’ unique characteristics or strengths well due to its weight
flexibility.
Table 5
Average normalized weights of output variables for each program

Program u1 u2

(a) All projects
A 0.0756 (5) 0.1197 (4)
B 0.1932 (2) 0.0278 (9)
C 0.2771 (1) 0.0192 (9)
D 0.2094 (2) 0.1067 (5)
E 0.0430 (8) 0.0672 (7)
F 0.1258 (4) 0.0000 (7)
Sig. 0.000 0.000

u6 u7

A 0.0210 (9) 0.0539 (7)
B 0.1025 (4) 0.0121 (10)
C 0.0117 (10) 0.0575 (7)
D 0.0866 (6) 0.1150 (3)
E 0.0746 (4) 0.0889 (3)
F 0.0715 (5) 0.2101 (2)
Sig. 0.004 0.348

(b) Inefficient projects only
u1 u2

A 0.0680 (5) 0.1143 (4)
B 0.1383 (3);1 0.0093 (10);1
C 0.2688 (2);1 0.0051 (10);1
D 0.2319 (2) 0.0416 (7);2
E 0.0559 (7)"1 0.0806 (5)"2
F 0.1258 (4) 0.0000 (7)

u6 u7

A 0.0191 (9) 0.0534 (7)
B 0.0830 (6);2 0.0159 (9)"1
C 0.0223 (8); 2 0.0188 (9);2
D 0.1422 (3)"3 0.1019 (4);1
E 0.0765 (6);2 0.1156 (2)"1
F 0.0715 (5) 0.2101 (2)
4.2. Incorporating relative importance of variables

Although DEA was successfully employed for performance com-
parison among R&D program, the above analysis has a limitation:
unrealistic weights. The weight flexibility is valid for different types
of variables, but not for the same types of variables since universal
agreements exist on the relative importance of the same types of
variables for any program. For example, it is obvious that a paper
published in an international journal listed on SCI is more valuable
than a paper published in a domestic journal not listed on SCI.

Two alternatives can be introduced to solve the problem. The
first one is to aggregate the same types of variables into a single
variable. The ten output variables can be categorized into three
types: papers, patents, and human resources. The relative impor-
tance of the same types of variables can be captured by integrating
them with fixed weights. The pairwise comparison method in the
analytic hierarchy process (AHP) was employed to derive the prior-
ity weights of variables. To avoid confusion between priority
weights in the AHP and weights as multipliers in DEA, from now
on, the former is called ‘priorities’, and the latter is described as
‘weights’. The relative importance values are determined on a scale
of 1–9, where a score of 1 indicates equal importance between the
two elements and 9 represents the extreme importance of one ele-
ment compared with the other one (Saaty, 1980). A reciprocal va-
lue is assigned to the inverse comparison; that is, aji = 1/aij where
aij denotes the importance of the ith element compared with the
jth element. Also, aii = 1 is preserved in the pairwise comparison
matrix. Then, the eigenvector method is employed to obtain the
priority vectors for each pairwise comparison matrix.

The pairwise comparisons were conducted by eight evaluators
who were R&D program managers or the persons concerned in
the foundation. The geometric mean was employed for group
u3 u4 u5

0.1433 (3) 0.0431 (8) 0.0606 (6)
0.1007 (5) 0.0761 (7) 0.0605 (8)
0.1929 (2) 0.1831 (3) 0.0599 (6)
0.0374 (9) 0.0086 (10) 0.2205 (1)
0.0741 (5) 0.0212 (10) 0.0240 (9)
0.0709 (6) 0.1465 (3) 0.3753 (1)
0.290 0.000 0.000

u8 u9 u10

0.0200 (10) 0.2830 (1) 0.1799 (2)
0.1227 (3) 0.0876 (6) 0.2167 (1)
0.0688 (5) 0.0555 (8) 0.0741 (4)
0.0662 (7) 0.0417 (8) 0.1080 (4)
0.0738 (6) 0.0956 (2) 0.4375 (1)
0.0000 (7) 0.0000 (7) 0.0000 (7)
0.000 0.000 0.019

u3 u4 u5

0.1506 (3) 0.0439 (8) 0.0583 (6)
0.1116 (5) 0.0640 (7) 0.0519 (8)
0.3171 (1)"1 0.0754 (6);3 0.0774 (5);1
0.0287 (9) 0.0000 (10) 0.2792 (1)
0.0963 (4)"1 0.0275 (9)"1 0.0312 (8)"1
0.0709 (6) 0.1465 (3) 0.3753 (1)

u8 u9 u10

0.0173 (10) 0.2938 (1) 0.1813 (2)
0.1548 (2)"1 0.1151 (4)"2 0.2563 (1)
0.0840 (4)"1 0.1060 (3)"5 0.0251 (7);3
0.0333 (8);1 0.0460 (6)"2 0.0954 (5);1
0.0000 (10);4 0.1092 (3);1 0.4071 (1)
0.0000 (7) 0.0000 (7) 0.0000 (7)



Table 7
Efficiency scores of projects in Program D for three cases

Projects Basic AR Output integration

Score Rank Score Rank Score Rank

D1 1.0000 1 0.9875 13 0.8258 18
D2 1.0000 1 1.0000 1 1.0000 1
D3 1.0000 1 1.0000 1 1.0000 1
D4 1.0000 1 1.0000 1 1.0000 1
D5 1.0000 1 0.8915 20 0.7884 20
D6 1.0000 1 1.0000 1 1.0000 1
D7 1.0000 1 1.0000 1 1.0000 1
D8 0.4756 28 0.4437 26 0.4309 26
D9 1.0000 1 1.0000 1 1.0000 1
D10 1.0000 1 0.8987 17 0.9341 13
D11 1.0000 1 0.8923 19 0.8527 17
D12 1.0000 1 0.9547 14 0.8632 16
D13 1.0000 1 0.8978 18 0.9151 14
D14 0.6084 27 0.5977 24 0.5964 22
D15 1.0000 1 1.0000 1 0.9999 11
D16 1.0000 1 0.6400 22 0.5558 24
D17 0.7460 24 0.4196 28 0.4189 27
D18 0.7670 23 0.6002 23 0.5895 23
D19 0.7292 25 0.4261 27 0.4002 28
D20 1.0000 1 0.9076 15 0.6965 21
D21 1.0000 1 0.8204 21 0.8031 19
D22 0.9790 22 0.9019 16 0.8769 15
D23 0.6450 26 0.5463 25 0.4773 25
D24 1.0000 1 1.0000 1 1.0000 1
D25 1.0000 1 1.0000 1 1.0000 1
D26 1.0000 1 1.0000 1 1.0000 1
D27 1.0000 1 1.0000 1 0.9998 12
D28 1.0000 1 1.0000 1 1.0000 1

Number of efficient units 21 (75.00%) 12 (42.86%) 10 (35.71%)
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decision making. The derived matrices are attached in Appendix B,
and the obtained priorities are shown in Table 6. The value of an
integrated variable was calculated as the weighted sum of the ob-
served values of each variable. Then, DEA can be conducted with
the two original input variables and the three integrated output
variables. Regardless of the integration of output variables, the
weight flexibility works among the three integrated variables;
therefore, the advantage of DEA for R&D program evaluation still
holds true.

The other alternative is to apply the AR model for weights
restriction. The relative importance can be reflected by placing
restrictions for the relationships between the weights of variables.
The upper and lower bound for AR1 restrictions can also be derived
from the pairwise comparisons. Contrary to the first alternative
where the geometric mean is used to aggregate multiple evalua-
tors’ judgment, the bounds are determined by using individual
evaluator’s priorities as

Lij ¼min
k

wki

wkj
; Uij ¼max

k

wki

wkj
; ð5Þ

where wki indicates the priority score of ui assigned by kth evalua-
tor. This method for deriving the bounds has often been used in the
previous studies (Shang and Sueyoshi, 1995; Takamura and Tone,
2003). The resulting restrictions are as follows:

2:2 6
u1ðDomestic SCI papersÞ

u2ðDomestic non-SCI papersÞ 6 5;

1:8 6
u3ðInternational SCI papersÞ

u4ðInternational non-SCI papersÞ 6 4;

1 6
u3ðInternational SCI papersÞ

u1ðDomestic SCI papersÞ 6 2;

1:5 6
u6ðDomestic granted patentsÞ
u5ðDomestic applied patentsÞ 6 3:5;

1 6
u8ðForeign granted patentsÞ
u7ðForeign applied patentsÞ 6 2:8;

1 6
u8ðForeign granted patentsÞ

u6ðDomestic granted patentsÞ 6 4;

1 6
u10ðDoctoral degree studentsÞ
u9ðMaster0s degree studentsÞ 6 5:

ð6Þ

These constraints are incorporated into the basic model. It is shown
that restrictions are made only for the relationships among the
same type of variables. Thus, the weight flexibility still exists among
the different types of variables. What should be noted here is, in the
presence of the weights restriction, infeasible solutions occur for
the DMUs that have the observed value of 0 in the variables in-
cluded in the constraints. To solve this problem, the zero values
were replaced by 0.00000001.

To illustrate the effects of the two alternatives, Table 7 com-
pares the efficiency scores of 28 projects in Program D for the
two cases with the basic BCC efficiency. There exist notable differ-
ences in the efficiency scores among the three cases. Many of the
Table 6
Priorities of output variables for integration

Integrated outputs Output variables Priorities

Papers Domestic SCI papers 0.27
Domestic non-SCI papers 0.07
International SCI papers 0.52
International non-SCI papers 0.14

Patents Domestic applied patents 0.06
Domestic granted patents 0.26
Foreign applied patents 0.12
Foreign granted patents 0.56

Human resources Master’s degree students 0.25
Doctoral degree students 0.75
efficient DMUs in the basic model were found to be inefficient in
the other two cases. What is prominent is sharp falls in the rank-
ings of D5, D16, and D21. On the other hand, some of the DMUs
are more highly ranked in the two alternatives (e.g. D8, D14,
D22, D23). It is concluded that two alternatives can produce more
realistic results by mirroring the relative importance of output
variables. The portion of the efficient DMUs is also decreased from
75.00% (basic) to 42.86% (AR) and 35.71% (output integration),
which indicates the two alternatives make a sharper discrimina-
tion among DMUs than the basic BCC model.

The program-level comparisons were made in the same way.
The two alternatives were applied to the basic model, the output-
oriented BCC model for comparison of efficiency between different
systems model used in 4.1. Kruskal–Wallis test with a post hoc
Mann–Whitney U test was then also run to compare performance
of the six R&D programs. Table 8 shows the results with the previ-
ous ones obtained from the basic model. The difference between
the basic evaluation and the two alternatives is not so significant
except Program E. Program E is ranked at top in the basic model
while it is fourth and fifth in the AR model and output integration,
respectively. This is because the projects of Program E has relatively
high values for the variables that are considered less important in
the pairwise comparisons such as O2 (Domestic non-SCI papers)
and O5 (Domestic applied patents). Program E benefited from the
full flexibility of the weights selection in the basic model, but it
turned out to be a bad performer under more realistic weights. A
marked difference between the AR model and output integration
is the performance of Program F. It shows better performance in
the output integration than in the AR model in terms of mean rank.
The plausible explanation for this is the fixed priorities of the out-
put variables led to sharp falls of the efficiency scores of the projects
belonging to Program A and E, which in turn made increases in
mean rank of Program F whose number of projects is very small.
Although it is hard to make judgment about which of the two alter-
natives is better due to the existence of their pros and cons, what is
evident is the performance comparison in which the relative



Table 8
Comparison of program performance among the three cases

Program Number of projects Basic AR Output integration

Average efficiency score Mean rank Average efficiency score Mean rank Average efficiency score Mean rank

A 436 0.4434 239.88 0.3055 244.42 0.0773 229.77
B 46 0.6971 366.99 0.5793 406.07 0.2157 421.28
C 21 0.7989 423.95 0.5762 406.71 0.5648 493.67
D 28 0.9257 475.73 0.7007 460.88 0.6411 504.64
E 13 0.9862 475.81 0.2875 262.54 0.0556 370.00
F 4 0.2651 136.75 0.1100 80.00 0.0749 389.75

Relative comparison E, D > C > B > A, F D > C, B > E, A > F D, C > B > F > E > A

v2 = 124.8, df = 5, p = 0.000; v2 = 107.0, df = 5, p = 0.000; v2 = 108.6, df = 5, p = 0.000.
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importance of the same types of variables is mirrored is more real-
istic and reasonable than when this is not the case.

5. Conclusions

We measured and compared the performance of the six na-
tional R&D programs with heterogeneous objectives using DEA.
Every project in every program was evaluated together, and Krus-
kal–Wallis test with a post hoc Mann–Whitney U test was then run
to compare performance of R&D programs. The two alternative ap-
proaches to incorporating the importance of variables in reality,
the AR model and output integration, were also considered.

Due to the heterogeneity of national R&D programs’ objectives,
few studies have been conducted on the performance comparison
among programs. This study contributes to the field in that it filled
the void by applying DEA to the national R&D programs. DEA, par-
ticularly the model for comparison of efficiency between different
systems, was proved to be effective for performance comparison
among R&D programs with heterogeneous objectives. The ‘‘benefit
of the doubt” weighting procedure of DEA enabled R&D programs’
unique characteristics or strengths to be captured. Nobody can
complain about the results since each program is evaluated under
its most favorable setting.

The DEA results are expected to provide practical implications
for policy making on national R&D programs. The limited resources
can be effectively allocated to several R&D programs based on their
performance rankings. R&D programs doing well (e.g. Program C
and D) deserve more investments; on the other hand, poor pro-
grams (e.g. Program A and F) have to be terminated or funds given
to them should be cut down unless their performance is improved.
Basically, DEA offers the way of improving efficiency for inefficient
DMUs although it is not explicitly dealt with in this study. Each
inefficient project is provided with the reference set consisting of
efficient projects for benchmarking, which in turn results in perfor-
mance improvement of programs. However, what DEA tells us is
the way of improving efficiency, that is, how many outputs should
be increased to achieve 100% efficiency, not the way of increasing
actual outputs at the current setting. To seek the way of enhancing
performance, the reasons for poor performance should be uncov-
ered by examining the context in which poor programs are formu-
lated and implemented, such as project selection procedure,
operational regulation, funding systems, etc. It is obvious that the
prerequisite for this is to be able to measure and compare the per-
formance of various R&D programs, which is the primary contribu-
tion of this study.

Nevertheless, this study is subject to some limitations. Firstly,
since the projects that have not been finished at the time of data
collection were not included, program performance was measured
without them. Secondly, despite the fact that it takes several years
for R&D outputs to be achieved, the outputs produced only for two
years after termination of projects were considered. These limita-
tions will be overcome if the analysis is conducted again at some
time in future. Thirdly, it may occur that a R&D program is consid-
ered as a high-performer, even though they failed to achieve its
own objectives, but accomplished excellent outcomes in another
area. Although it was not found in this study, when this is the case,
judgment could be controversial. These issues should be dealt with
in future research. Another fruitful avenue for future research is to
employ various types of extended DEA models and compare the re-
sults. Considering another model is expected to lead us to seek a
better way of evaluating and comparing the performance of na-
tional R&D programs with heterogeneous objectives.
Appendix A. Descriptive statistics of data

Program Statistics I1a I2 O1 O2 O3 O4 O5 O6 O7 O8 O9 O10
Program A
 Mean
 256.79
 2.63
 0.37
 2.79
 3.34
 0.33
 0.42
 0.21
 0.06
 0.06
 3.03
 0.56

Stdv
 60.09
 0.71
 1.07
 3.99
 4.40
 1.08
 1.14
 1.17
 0.36
 0.70
 3.13
 0.91

Max
 360
 5
 10
 27
 45
 13
 11
 17
 4
 10
 19
 5

Min
 113
 1
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
Program B
 Mean
 4891.59
 1.00
 3.48
 2.70
 60.61
 0.30
 5.15
 4.11
 5.33
 1.87
 10.87
 5.24

Stdv
 1315.41
 0.00
 5.21
 7.13
 44.60
 0.89
 7.04
 5.00
 9.40
 3.12
 9.01
 4.45

Max
 7905
 1
 20
 33
 226
 5
 27
 17
 45
 18
 38
 20

Min
 2418
 1
 0
 0
 7
 0
 0
 0
 0
 0
 0
 0
Program C
 Mean
 5763.67
 11.57
 18.48
 16.10
 216.81
 10.24
 16.10
 6.00
 5.76
 1.67
 97.05
 29.10

Stdv
 1626.78
 6.56
 16.91
 15.32
 140.19
 15.27
 16.03
 7.70
 14.62
 3.06
 63.30
 13.65

Max
 8164
 28
 67
 56
 630
 55
 57
 28
 68
 12
 330
 54

Min
 690
 5
 0
 0
 58
 0
 0
 0
 0
 0
 30
 7
Program D
 Mean
 6528.68
 14.30
 17.43
 145.61
 258.32
 22.68
 43.93
 24.21
 11.36
 6.11
 170.96
 42.00

Stdv
 1245.78
 4.82
 17.01
 146.45
 192.25
 33.11
 32.18
 16.07
 14.12
 6.31
 102.08
 28.74

Max
 9233
 22
 67
 574
 897
 140
 135
 71
 69
 21
 376
 106

Min
 4638
 6
 0
 8
 47
 0
 0
 0
 0
 0
 55
 9
(continued on next page)
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Appendix A (continued)
Program
 Statistics
 I1a
 I2
 O1
 O2
 O3
 O4
 O5
 O6
 O7
 O8
 O9
 O10
Program E
 Mean
 1300.00
 10.92
 0.85
 9.77
 32.08
 0.85
 2.38
 1.31
 0.62
 0.31
 9.15
 5.46

Stdv
 212.22
 3.86
 1.28
 6.31
 15.47
 1.21
 2.18
 1.70
 1.12
 0.85
 5.49
 4.29

Max
 1600
 18
 4
 21
 74
 3
 8
 6
 3
 3
 20
 16

Min
 1035
 6
 0
 1
 10
 0
 0
 0
 0
 0
 3
 0
Program F
 Mean
 4500.00
 29.00
 3.75
 3.00
 46.75
 1.75
 5.50
 3.25
 1.50
 0.00
 15.00
 4.25

Stdv
 1154.70
 2.71
 4.99
 2.16
 24.34
 2.87
 4.04
 3.95
 1.91
 0.00
 4.76
 3.30

Max
 5500
 31
 11
 5
 71
 6
 9
 9
 4
 0
 18
 8

Min
 3500
 25
 0
 0
 13
 0
 0
 0
 0
 0
 8
 0
a Unit: one million won.
Appendix B. Pairwise comparison matrices for output variables

B.1. Pairwise comparison matrix for paper-related variables
O1: Domestic
SCI papers
O2: Domestic
non-SCI papers
O3: International
SCI papers
O4: International
non-SCI papers
Priorities
O1: Domestic SCI papers
 1
 4
 1/2
 2
 0.27

O2: Domestic non-SCI papers
 4
 1
 1/7
 1/2
 0.07

O3: International SCI papers
 2
 7
 1
 4
 0.52

O4: International non-SCI papers
 1/2
 2
 1/4
 1
 0.14
B.2. Pairwise comparison matrix for patent-related variables
O5: Domestic
applied patents
O6: Domestic
granted patents
O7: Foreign
applied patents
O8: Foreign
granted patents
Priorities
O5: Domestic applied patents
 1
 1/5
 1/3
 1/7
 0.06

O6: Domestic granted patents
 5
 1
 3
 1/3
 0.26

O7: Foreign applied patents
 3
 1/3
 1
 1/5
 0.12

O8: Foreign granted patents
 7
 3
 5
 1
 0.56
B.3. Pairwise comparison matrix for human resources-related variables
O9: Master’s
degree
students
O10: Doctoral
degree
students
Priorities
O9: Master’s degree
students
1
 1/3
 0.25
O10: Doctoral degree
students
3
 1
 0.75
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